Colorful induced subgraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colorful induced subgraphs

Kierstead, H.A. and W.T. Trotter. Colorful induced subgraphs, Discrete Mathematics 101 (1992) 165-169. A colored graph is a graph whose vertices have been properly, though not necessarily optimally colored, with integers. Colored graphs have a natural orientation in which edges are directed from the end point with smaller color to the end point with larger color. A subgraph of a colored graph i...

متن کامل

Colorful subgraphs in Kneser-like graphs

Combining Ky Fan’s theorem with ideas of Greene and Matoušek we prove a generalization of Dol’nikov’s theorem. Using another variant of the Borsuk-Ulam theorem due to Bacon and Tucker, we also prove the presence of all possible completely multicolored t-vertex complete bipartite graphs in t-colored t-chromatic Kneser graphs and in several of their relatives. In particular, this implies a genera...

متن کامل

Detecting induced subgraphs

An s-graph is a graph with two kinds of edges: subdivisible edges and real edges. A realisation of an s-graph B is any graph obtained by subdividing subdivisible edges of B into paths of arbitrary length (at least one). Given an s-graph B, we study the decision problem ΠB whose instance is a graph G and question is “Does G contain a realisation of B as an induced subgraph?”. For several B’s, th...

متن کامل

Large induced degenerate subgraphs

A graph H is d-degenerate if every subgraph of it contains a vertex of degree smaller than d. For a graph G, let ad(G) denote the maximum number of vertices of an induced d-degenerate subgraph of G. Sharp lowers bounds for %(G) in terms of the degree sequence of G are obtained, and the minimum number of edges of a graph G with n vertices and ~2(G) < m is determined precisely for all m < n.

متن کامل

Excluding induced subgraphs

Given two graphs, G and H, we say that H is an induced subgraph of G if V (H) ⊆ V (G), and two vertices of H are adjacent if and only if they are adjacent in G. Let F be a (possibly infinite) family of graphs. A graph G is called F -free if no member of F is isomorphic to an induced subgraph of G. A clique in a graph is a set of vertices all pairwise adjacent, and a stable set is a set of verti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1992

ISSN: 0012-365X

DOI: 10.1016/0012-365x(92)90600-k